You are here

Science

Scientists observe structure within the pulses of a Millisecond Pulsar

Indian astronomers have detected microstructure emissions from a millisecond pulsar for the first time. Millisecond pulsars (MSP) are highly magnetized, rapidly rotating neutron stars that take as little as one-thousandth to one-hundredth of a second to rotate about its axis once. In a recently published study, scientists from the Department of Physics at the Indian Institute of Science (IISc) and the National Centre for Radio Astrophysics (NCRA), Tata Institute for Fundamental Research (TIFR), have discovered these microstructure emissions using the Giant Metrewave Radio Telescope (GMRT), an array of thirty antennae scanning the sky for radio sources. They are now uncovering the processes that produce these microstructure emissions. While similar emissions had been discovered from more slowly rotating pulsars, this is the first time they have been discovered coming from millisecond pulsars.

 

Scientists develop novel methodology to study temperature controlled gene function

Genetic research is at a colossal high today, and although we know a lot about our genes, the roles of more than 30% of the functional genes in the human body are not really understood. This number can be even lower for other members of the biotic world. Studies to determine gene function involve combinations of various experimental methods at biochemical, cellular, and organismal levels. One such method, that is popularly employed, uses temperature-sensitive mutant genes that behave differently at different temperatures. The process of identifying and generating mutated genes, however, is laborious, time-consuming and relies heavily on chance. It is at this juncture that Prof. Raghavan Varadarajan and his team from the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, suggest an innovative, yet fairly straightforward, technique to study gene functionality, which would make one wonder how no one thought of this earlier!

Scientists elucidate the mechanism behind Mycobacterium hijacking Macrophages for its own survival

In the movie “Terminator: The Rise of Machines”, the character Terminatrix manipulates the Cyborgs tweaking them to work against humans and to her own advantage. Now, scientists have discovered that some strains of bacteria could do the same to some of our cells. Mycobacterium tuberculosis, the bacterium that causes tuberculosis, is one such. It manipulates the macrophages, a type of white blood cell that hunts and engulfs invading pathogens, to act as bacterial reservoirs and provide a survival niche. This niche not only provides the bacteria with nutrients, but also helps evade the normal immune response. In a recent study, a team of scientists from the Indian Institute of Science, Bangalore, has explored the mechanism behind the manipulation of macrophages by this bacteria.

How does debris from supernovae make molecules? Scientists may have an answer

‘We are all made of stardust’ goes the common saying. The phrase is more than just rhetoric; it alludes to the formation of atoms and molecules in the universe. Most atoms and a few molecules around us were mostly formed in the bowels of exploding stars, which then went on to form planets, oceans, living organisms and everything in between. Now, a collaborative study by Raman Research Institute (RRI), Bangalore, Indian Institute of Science (IISc), Bangalore and P. N. Lebedev Physical Institute, Moscow, is studying the processes that may have led to the formation of these molecules from the debris of the exploding stars.

 

What causes defective ribosomes? New study may have the answer

Ribosomes are molecular machines that make proteins in cells. That the ribosomes are important can be judged by the fact that the cells spend about 40% of their energy in assembling them. In bacteria, ribosomes are made up of a large (50S) and a small (30S) subunits. Flaws in the assembly and maturation (biogenesis) of any of these subunits affect protein synthesis in various ways and often result in the organism’s intolerance to cold, and impact their resistance to drugs and pathogenity. In higher organisms (including humans), defective biogenesis of ribosomes could lead to various diseases. Hence, an understanding of how cells manage accuracy in the complex process of ribosome biogenesis is of utmost importance in developing therapeutic interventions. Now, a study from the laboratory of Prof. Umesh Varshney at the Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bangalore, has unravelled the mechanism behind synthesis of ribosomes.

 

DNA damage in sperm alters Embryo Metabolism, finds study

Science has established that the father’s sperm, which fertilizes the mother’s ovum resulting in the formation of an embryo, decides the sex of an individual. So it’s only logical that if the ‘male factor’ of the sperm/ovum relationship is damaged, the product will be too. Now, a recent collaborative study by a team of researchers led by Prof. Hanudatta Atreya of the Indian Institute of Science, Bangalore, and Prof. Satish Kumar Adiga of Kasturba Medical College, Manipal, has found that if the sperm, set to fertilize a particular ovum, has damaged DNA, it affects the metabolism of the embryo that it fathers. The study was conducted using samples of sperm and ova from couples undergoing Intra-Cytoplamic Sperm Injection (ICSI), a popular technique to help infertile couples conceive.

 

Now, scientists design colourful solar collectors to decorate your roofs

Black coloured rooftops have become the norm of many of the cities’ landscape with increasing number of houses switching over to sustainable, efficient and clean energy source – solar energy. Solar-thermal power systems that convert solar energy to heat or electricity are becoming ubiquitous. These systems typically consist of a flat plate collector that utilizes solar absorber coatings to get maximum conversion efficiency from incident solar radiation to heat. These collectors are coated black to enhance the absorptance- the effectiveness of absorbing radiant energy. Now, a group of researchers, led by Prof. Bikramjit Basu from the Material Research Centre at the Indian Institute of Science, Bangalore, and Dr. Harish C Barshilia from CSIR-National Aerospace Laboratories, has developed a new, colourful coating for flat plate collectors, thereby increasing its absorptance without compromising the aesthetic appearance of the roofs where they are installed.

 

Computer Scientists Develop Methods to Make Video Search Less Tedious

The Internet is a bottomless mine of information in various forms – text, videos and images. Organizing this information for easy search and retrieval is very beneficial to internet users, and poses challenges to computer scientists. While lot of research progress has been made about categorizing textual data, the same cannot be said about images and videos. A group of researchers at the Indian Institute of Science, Bangalore, has been attempting to make video search on the Internet user-friendly. In a recent paper, Prof. Chiranjib Bhattacharyya and a Ph.D. scholar Dr. Adway Mitra, at the Department of Computer Science and Automation (CSA), and Prof. Soma Biswas from the Department of Electrical Engineering, have presented techniques to this end.

A Statistical Solution for the Water Management Predicament

Global Climate Models (GCMs) are mathematical models to understand and predict the Earth’s climate by projecting the real-world processes over time. These simulation tools help to predict future climate variables that will be useful to develop sustainable long, medium and short-term water resource planning strategies. A new study by a team of scientists - Prof. D. Nagesh Kumar from the Indian Institute of Science, Bangalore and Prof. K. Srinivasa Raju from BITS-Pilani, Hyderabad campus, has analyzed numerous available GCMs to choose the best that would be applicable in the Indian context. Such analysis helps in developing the best resource planning strategies and the best climate models that can be used for localized needs.

Prof. Prabeer Barpanda – A positively charged academician

Not many young professors are as driven as Professor Prabeer Barpanda who has been donned with an unbelievable streak of academic awards. A professor at the Materials Research Centre, Indian Institute of Science, Bangalore, Prof. Barpanda is the winner of the Indian National Science Academy Young Scientist Award, 2016. He became the first Indian to receive the Energy Technology Division Supramaniam Srinivasan Young Investigator Award – an annual award given by the Electrochemical Society (ECS), USA, for 2016. In addition, he is also the first Indian to receive the American Ceramics Society’s Ross Coffin Purdy Award, 2016 awarded in October.

Pages